
logistic_regression
Efficiency of logistic regression with sample data from scikit-learn

Kunal Khurana

2024-05-20

Table of contents

Explanation and steps for logistic regression 3
model building . 3
testing . 4

2

Explanation and steps for logistic regression

Probabilities are utilized instead of specific values in this approach which is not the case for
linear regression. Instead of mean square error, cross-entropy is employed.

The Gradient Descent method is applied for LogisticRegression as well.

Weight calculation involves subtracting the gradient from the current weight.

Steps: (i) Training - Initialize weight and bias as zero. (ii) Given a data point - predict result,
calculate error, use gradient descent to determine new weight and bias, repeat n times. (iii)
Testing - input values into the equation, select label based on probability.

The same equation as in linear regression is utilized, integrated into the sigmoid function.

model building

creating a class LogisticRegression
import numpy as np

Creating a sigmoid function as we'll be using it
def sigmoid(x):

return 1 / (1 + np.exp(-x))

class LogisticRegression:
def __init__(self, lr=0.001, n_iters=1000):

self.lr = lr
self.n_iters = n_iters
self.weights = None
self.bias = None

always start by adding fit and predict funciton
def fit(self, X, y):

Initializing weights and bias
n_samples, n_features = X.shape

3

self.weights = np.zeros(n_features) # assigning zeros as weights
self.bias = 0

Gradient Descent
for _ in range(self.n_iters):

linear_pred = np.dot(X, self.weights) + self.bias
predictions = sigmoid(linear_pred)

Gradient calculation
dw = (1 / n_samples) * np.dot(X.T, (predictions - y))
db = (1 / n_samples) * np.sum(predictions - y)

Update weights and bias
self.weights -= self.lr * dw
self.bias -= self.lr * db

def predict(self, X):
linear_pred = np.dot(X, self.weights) + self.bias
y_pred = sigmoid(linear_pred)
class_pred = [0 if i <= 0.5 else 1 for i in y_pred]
return class_pred

testing

testing how accurate it is with breast_cancer dataset from scikit_learn

import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

Load data
bc = datasets.load_breast_cancer()
X, y = bc.data, bc.target

Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1234)

4

Normalize features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

Initialize and fit the logistic regression model
clf = LogisticRegression(lr=0.01, n_iters=1000)
clf.fit(X_train, y_train)

Predict on test data
y_pred = clf.predict(X_test)

Accuracy function
def accuracy(y_pred, y_test):

accuracy = np.sum(y_pred == y_test) / len(y_test)
return accuracy

Calculate accuracy
acc = accuracy(y_pred, y_test)
print(f'Accuracy: {acc:.2f}')

Accuracy: 0.94

5

	Explanation and steps for logistic regression
	model building
	testing

